Multi-Branch Adaptive Hard Region Mining Network for Urban Scene Parsing of High-Resolution Remote-Sensing Images

Author:

Bai HaiweiORCID,Cheng JianORCID,Su Yanzhou,Wang Qi,Han Haoran,Zhang Yijie

Abstract

Scene parsing of high-resolution remote-sensing images (HRRSIs) refers to parsing different semantic regions from the images, which is an important fundamental task in image understanding. However, due to the inherent complexity of urban scenes, HRRSIs contain numerous object classes. These objects present large-scale variation and irregular morphological structures. Furthermore, their spatial distribution is uneven and contains substantial spatial details. All these features make it difficult to parse urban scenes accurately. To deal with these dilemmas, in this paper, we propose a multi-branch adaptive hard region mining network (MBANet) for urban scene parsing of HRRSIs. MBANet consists of three branches, namely, a multi-scale semantic branch, an adaptive hard region mining (AHRM) branch, and an edge branch. First, the multi-scale semantic branch is constructed based on a feature pyramid network (FPN). To reduce the memory footprint, ResNet50 is chosen as the backbone, which, combined with the atrous spatial pyramid pooling module, can extract rich multi-scale contextual information effectively, thereby enhancing object representation at various scales. Second, an AHRM branch is proposed to enhance feature representation of hard regions with a complex distribution, which would be difficult to parse otherwise. Third, the edge-extraction branch is introduced to supervise boundary perception training so that the contours of objects can be better captured. In our experiments, the three branches complemented each other in feature extraction and demonstrated state-of-the-art performance for urban scene parsing of HRRSIs. We also performed ablation studies on two HRRSI datasets from ISPRS and compared them with other methods.

Funder

National Natural Science Foundation of China

NNSFC

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3