Abstract
The purpose of the article is to substantiate the feasibility of using object contrast as an informative feature for the formation of images used in technical vision systems. This goal is achieved by studying the dependence of the contrast of objects in images on the viewing geometry and determining the conditions under which the greatest similarity of the compared images is ensured. The solution to the first problem is based on the presentation of reference information about sighted objects, taking into account the navigation parameters of mobile robots. By modeling in the MATLAB software environment for typical viewing conditions, selective images were obtained using randomly selected fragments from Google Earth Pro, the distribution of contrast values and the cross-correlation function of the original and selective images. The influence of viewing angles on the distribution of contrasts and the formation of the decisive function was determined. The studies were performed for viewing angles of -60˚, -80˚ and -90˚ for altitudes in the range from 500 to 600 meters. The most significant result is a model of a set of reference images, taking into account the influence of navigation parameters on the contrast of objects, as well as experimentally established dependences of the distribution of contrasts for typical viewing conditions. The novelty of the work lies in the fact that the procedure for generating images and the decision function using the contrast of objects has been further developed. This will significantly increase the efficiency of selection of objects with insignificant brightness characteristics.
Publisher
Technical University of Moldova