Abstract
Land surface temperature (LST) is a key variable influencing the energy balance between the land surface and the atmosphere. In this work, a split-window algorithm was used to calculate LST from Sentinel-3A Sea and Land Surface Temperature Radiometer (SLSTR) thermal infrared data. The National Centers for Environmental Prediction (NCEP) reanalysis atmospheric profiles combined with the radiation transport model MODerate resolution atmospheric TRANsmission version 5.2 (MODTRAN 5.2) were utilized to obtain atmospheric water vapor content (WVC). The ASTER Global Emissivity Database Version 3 (ASTER GED v3) product was utilized to estimate surface emissivity in order to improve the accuracy of LST estimation over barren surfaces. Using a simulation database, the coefficients of the algorithm were fitted and the performance of the algorithm was evaluated. The root-mean-square error (RMSE) values of the differences between the estimated LST and the actual LST of the MODTRAN radiative transfer simulation at each WVC subrange of 0–6.5 g/cm2 were less than 1.0 K. To validate the retrieval accuracy, ground-based LST measurements were collected at two relatively homogeneous desert study sites in Dalad Banner and Wuhai, Inner Mongolia, China. The bias between the retrieved LST and the in situ LST was about 0.2 K and the RMSE was about 1.3 K at the Dalad Banner site, whereas they were approximately -0.4 and 1.0 K at the Wuhai site. As a reference, the retrieved LST was compared with the operational SLSTR LST product in this study. The bias between the SLSTR LST product and the in situ LST was approximately 1 K and the RMSE was approximately 2 K at the Dalad Banner site, whereas they were approximately 1.1 and 1.4 K at the Wuhai site. The results demonstrate that the split-window algorithm combined with improved emissivity estimation based on the ASTER GED product can distinctly obtain better accuracy of LST over barren surfaces.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献