Mid-Infrared Emissivity Retrieval from Nighttime Sentinel-3 SLSTR Images Combining Split-Window Algorithms and the Radiance Transfer Method

Author:

Ye Xin,Ren HuazhongORCID,Wang Pengxin,Sun Zhongqiu,Zhu JianORCID

Abstract

Land surface emissivity is a key parameter that affects energy exchange and represents the spectral characteristics of land cover. Large-scale mid-infrared (MIR) emissivity can be efficiently obtained using remote sensing technology, but current methods mainly rely on prior knowledge and multi-temporal or multi-angle remote sensing images, and additional errors may be introduced due to the uncertainty of external data such as atmospheric profiles and the inconsistency of multiple source data in spatial resolution, observation time, and other information. In this paper, a new practical method was proposed which can retrieve MIR emissivity with only a single image input by combining the radiance properties of TIR and MIR channels and the spatial information of remote sensing images based on the Sentinel-3 Sea and land surface temperature radiometer (SLSTR) data. Two split-window (SW) algorithms that use TIR channels only and MIR and TIR channels to retrieve land surface temperature (LST) were developed separately, and the initial values of MIR emissivity were obtained from the known LST and TIR emissivity. Under the assumption that the atmospheric conditions in the local area are constant, the radiance transfer equations for adjacent pixels are iterated to optimize the initial values to obtain stable estimation results. The experimental results based on the simulation dataset and real SLSTR images showed that the proposed method can achieve accurate MIR emissivity results. In future work, factors such as angular effects, solar radiance, and the influence of atmospheric water vapor will be further considered to improve performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3