Rapid Determination of Soil Class Based on Visible-Near Infrared, Mid-Infrared Spectroscopy and Data Fusion

Author:

Xu Hanyi,Xu Dongyun,Chen SongchaoORCID,Ma Wanzhu,Shi ZhouORCID

Abstract

Wise soil management requires detailed soil information, but conventional soil class mapping in a rather coarse spatial resolution cannot meet the demand for precision agriculture. With the advantages of non-destructiveness, rapid cost-efficiency, and labor savings, the spectroscopic technique has proved its high potential for success in soil classification. Previous studies mainly focused on predicting soil classes using a single sensor. In this study, we attempted to compare the predictive ability of visible near infrared (vis-NIR) spectra, mid-infrared (MIR) spectra, and their fused spectra for soil classification. A total of 146 soil profiles were collected from Zhejiang, China, and the soil properties and spectra were measured by their genetic horizons. Along with easy-to-measure auxiliary soil information (soil organic matter, soil texture, color and pH), four spectral data, including vis-NIR, MIR, their simple combination (vis-NIR-MIR), and outer product analysis (OPA) fused spectra, were used for soil classification using a multiple objectives mixed support vector machine model. The independent validation results showed that the classification model using MIR (accuracy of 64.5%) was slightly better than that using vis-NIR (accuracy of 64.2%). The predictive model built on vis-NIR-MIR did not improve the classification accuracy, having the lowest accuracy of 61.1%, which likely resulted from an over-fitting problem. The model based on OPA fused spectra performed best with an accuracy of 68.4%. Our results prove the potential of fusing vis-NIR and MIR using OPA for improving prediction ability for soil classification.

Funder

National Key Research and Development Program

Public Welfare Research of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3