Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion

Author:

Zhu Huibin,He Zhangming,Wei Juhui,Wang Jiongqi,Zhou Haiyin

Abstract

Bearing is one of the most important parts of rotating machinery with high failure rate, and its working state directly affects the performance of the entire equipment. Hence, it is of great significance to diagnose bearing faults, which can contribute to guaranteeing running stability and maintenance, thus promoting production efficiency and economic benefits. Usually, the bearing fault features are difficult to extract effectively, which results in low diagnosis performance. To solve the problem, this paper proposes a bearing fault feature extraction method and it establishes a bearing fault diagnosis method that is based on feature fusion. The basic idea of the method is as follows: firstly, the time-frequency feature of the bearing signal is extracted through Wavelet Packet Transform (WPT) to form the time-frequency characteristic matrix of the signal; secondly, the Multi-Weight Singular Value Decomposition (MWSVD) is constructed by singular value contribution rate and entropy weight. The features of the time-frequency feature matrix obtained by WPT are further extracted, and the features that are sensitive to fault in the time-frequency feature matrix are retained while the insensitive features are removed; finally, the extracted feature matrix is used as the input of the Support Vector Machine (SVM) classifier for bearing fault diagnosis. The proposed method is validated by data sets from the time-varying bearing data from the University of Ottawa and Case Western Reserve University Bearing Data Center. The results show that the algorithm can effectively diagnose the bearing under the steady-state and unsteady state. This paper proposes that the algorithm has better fault diagnosis capabilities and feature extraction capabilities when compared with methods that aree based on traditional feature technology.

Funder

civil space pre-research project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3