Modeling the Carbon Sequestration Potential of Multifunctional Agroforestry-Based Phytoremediation (MAP) Systems in Chinandega, Nicaragua

Author:

Kåresdotter ElisieORCID,Bergqvist Lisa,Flores-Carmenate Ginnette,Haller HenrikORCID,Jonsson AndersORCID

Abstract

Global sustainability challenges associated with increasing resource demands from a growing population call for resource-efficient land-use strategies that address multiple sustainability issues. Multifunctional agroforestry-based phytoremediation (MAP) is one such strategy that can simultaneously capture carbon, decontaminate soils, and provide diverse incomes for local farmers. Chinandega, Nicaragua, is a densely populated agricultural region with heavily polluted soils. Four different MAP systems scenarios relevant to Chinandega were created and carbon sequestration potentials were calculated using CO2FIX. All scenarios showed the potential to store significantly more carbon than conventional farming practices, ranging from 2.5 to 8.0 Mg CO2eq ha−1 yr−1. Overall, carbon sequestration in crops is relatively small, but results in increased soil organic carbon (SOC), especially in perennials, and the combination of crops and trees provide higher carbon sequestration rates than monoculture. Changes in SOC are crucial for long-term carbon sequestration, here ranging between 0.4 and 0.9 Mg C ha−1 yr−1, with the most given in scenario 4, an alley cropping system with pollarded trees with prunings used as green mulch. The adoption rate of multifunctional strategies providing both commodity and non-commodity outputs, such as carbon sequestration, would likely increase if phytoremediation is included. Well-designed MAP systems could help reduce land-use conflicts, provide healthier soil, act as climate change mitigation, and have positive impacts on local health and economies.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference84 articles.

1. Land Use. Our World Data https://ourworldindata.org/land-use

2. The State of the World's Land and Water Resources for Food and Agriculture: Managing Systems at Risk;Dubois,2011

3. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems

4. The role of biomass and bioenergy in a future bioeconomy: Policies and facts

5. Land use change in an agricultural landscape causing degradation of soil based ecosystem services

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3