Multi-Supervised Feature Fusion Attention Network for Clouds and Shadows Detection

Author:

Ji Huiwen1,Xia Min1ORCID,Zhang Dongsheng1,Lin Haifeng2ORCID

Affiliation:

1. Jiangsu Key Laboratory of Big Data Analysis Technology, CICAEET, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Abstract

Cloud and cloud shadow detection are essential in remote sensing imagery applications. Few semantic segmentation models were designed specifically for clouds and their shadows. Based on the visual and distribution characteristics of clouds and their shadows in remote sensing imagery, this paper provides a multi-supervised feature fusion attention network. We design a multi-scale feature fusion block (FFB) for the problems caused by the complex distribution and irregular boundaries of clouds and shadows. The block consists of a fusion convolution block (FCB), a channel attention block (CAB), and a spatial attention block (SPA). By multi-scale convolution, FCB reduces excessive semantic differences between shallow and deep feature maps. CAB focuses on global and local features through multi-scale channel attention. Meanwhile, it fuses deep and shallow feature maps with non-linear weighting to optimize fusion performance. SPA focuses on task-relevant areas through spatial attention. With the three blocks above, FCB alleviates the difficulties of fusing multi-scale features. Additionally, it makes the network resistant to background interference while optimizing boundary detection. Our proposed model designs a class feature attention block (CFAB) to increase the robustness of cloud detection. The network achieves good performance on the self-made cloud and shadow dataset. This dataset is taken from Google Earth and contains remote sensing imagery from several satellites. The proposed model achieved a mean intersection over union (MIoU) of 94.10% on our dataset, which is 0.44% higher than the other models. Moreover, it shows high generalization capability due to its superior prediction results on HRC_WHU and SPARCS datasets.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3