Attention Guide Axial Sharing Mixed Attention (AGASMA) Network for Cloud Segmentation and Cloud Shadow Segmentation

Author:

Gu Guowei1ORCID,Wang Zhongchen1ORCID,Weng Liguo1,Lin Haifeng2ORCID,Zhao Zikai13,Zhao Liling1ORCID

Affiliation:

1. Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210000, China

3. Department of Computer Science, University of Reading, Whiteknights, Reading RG6 6DH, UK

Abstract

Segmenting clouds and their shadows is a critical challenge in remote sensing image processing. The shape, texture, lighting conditions, and background of clouds and their shadows impact the effectiveness of cloud detection. Currently, architectures that maintain high resolution throughout the entire information-extraction process are rapidly emerging. This parallel architecture, combining high and low resolutions, produces detailed high-resolution representations, enhancing segmentation prediction accuracy. This paper continues the parallel architecture of high and low resolution. When handling high- and low-resolution images, this paper employs a hybrid approach combining the Transformer and CNN models. This method facilitates interaction between the two models, enabling the extraction of both semantic and spatial details from the images. To address the challenge of inadequate fusion and significant information loss between high- and low-resolution images, this paper introduces a method based on ASMA (Axial Sharing Mixed Attention). This approach establishes pixel-level dependencies between high-resolution and low-resolution images, aiming to enhance the efficiency of image fusion. In addition, to enhance the effective focus on critical information in remote sensing images, the AGM (Attention Guide Module) is introduced, to integrate attention elements from original features into ASMA, to alleviate the problem of insufficient channel modeling of the self-attention mechanism. Our experimental results on the Cloud and Cloud Shadow dataset, the SPARCS dataset, and the CSWV dataset demonstrate the effectiveness of our method, surpassing the state-of-the-art techniques for cloud and cloud shadow segmentation.

Funder

National Natural Science Foundation of PR China

Publisher

MDPI AG

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3