MSFANet: Multi-Scale Strip Feature Attention Network for Cloud and Cloud Shadow Segmentation

Author:

Chen Kai1,Dai Xin1,Xia Min1ORCID,Weng Liguo1,Hu Kai1ORCID,Lin Haifeng2ORCID

Affiliation:

1. Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China

Abstract

Cloud and cloud shadow segmentation is one of the most critical challenges in remote sensing image processing. Because of susceptibility to factors such as disturbance from terrain features and noise, as well as a poor capacity to generalize, conventional deep learning networks, when directly used to cloud and cloud shade detection and division, have a tendency to lose fine features and spatial data, leading to coarse segmentation of cloud and cloud shadow borders, false detections, and omissions of targets. To address the aforementioned issues, a multi-scale strip feature attention network (MSFANet) is proposed. This approach uses Resnet18 as the backbone for obtaining semantic data at multiple levels. It incorporates a particular attention module that we name the deep-layer multi-scale pooling attention module (DMPA), aimed at extracting multi-scale contextual semantic data, deep channel feature information, and deep spatial feature information. Furthermore, a skip connection module named the boundary detail feature perception module (BDFP) is introduced to promote information interaction and fusion between adjacent layers of the backbone network. This module performs feature exploration on both the height and width dimensions of the characteristic pattern to enhance the recovery of boundary detail intelligence of the detection targets. Finally, during the decoding phase, a self-attention module named the cross-layer self-attention feature fusion module (CSFF) is employed to direct the aggregation of deeplayer semantic feature and shallow detail feature. This approach facilitates the extraction of feature information to the maximum extent while conducting image restoration. The experimental outcomes unequivocally prove the efficacy of our network in effectively addressing complex cloud-covered scenes, showcasing good performance across the cloud and cloud shadow datasets, the HRC_WHU dataset, and the SPARCS dataset. Our model outperforms existing methods in terms of segmentation accuracy, underscoring its paramount importance in the field of cloud recognition research.

Funder

National Natural Science Foundation of PR China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3