Revolutionizing Drug Targeting Strategies: Integrating Artificial Intelligence and Structure-Based Methods in PROTAC Development

Author:

Danishuddin 1,Jamal Mohammad Sarwar2,Song Kyoung-Seob3ORCID,Lee Keun-Woo45,Kim Jong-Joo1ORCID,Park Yeong-Min6ORCID

Affiliation:

1. Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea

2. BioWiz Laboratories, Inc., Ste-466440 Burroughs St., Detroit, MI 48202, USA

3. Department of Medical Science, Kosin University College of Medicine, 194 Wachi-ro, Yeongdo-gu, Busan 49104, Republic of Korea

4. Division of Life Science, Department of Bio & Medical Big-Data (BK4 Program), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Republic of Korea

5. Angel i-Drug Design (AiDD), 33-3 Jinyangho-ro 44, Jinju 52650, Republic of Korea

6. Department of Integrative Biological Sciences and Industry, Sejong University, 209, Neugdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea

Abstract

PROteolysis TArgeting Chimera (PROTAC) is an emerging technology in chemical biology and drug discovery. This technique facilitates the complete removal of the target proteins that are “undruggable” or challenging to target through chemical molecules via the Ubiquitin–Proteasome System (UPS). PROTACs have been widely explored and outperformed not only in cancer but also in other diseases. During the past few decades, several academic institutes and pharma companies have poured more efforts into PROTAC-related technologies, setting the stage for several major degrader trial readouts in clinical phases. Despite their promising results, the formation of robust ternary orientation, off-target activity, poor permeability, and binding affinity are some of the limitations that hinder their development. Recent advancements in computational technologies have facilitated progress in the development of PROTACs. Researchers have been able to utilize these technologies to explore a wider range of E3 ligases and optimize linkers, thereby gaining a better understanding of the effectiveness and safety of PROTACs in clinical settings. In this review, we briefly explore the computational strategies reported to date for the formation of PROTAC components and discuss the key challenges and opportunities for further research in this area.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3