Knowledge Distillation for Enhanced Age and Gender Prediction Accuracy

Author:

Kim Seunghyun1ORCID,Park Yeongje1ORCID,Lee Eui Chul2ORCID

Affiliation:

1. Department of AI & Informatics, Graduate School, Sangmyung University, Seoul 03016, Republic of Korea

2. Department of Human-Centered Artificial Intelligence, Sangmyung University, Seoul 03016, Republic of Korea

Abstract

In recent years, the ability to accurately predict age and gender from facial images has gained significant traction across various fields such as personalized marketing, human–computer interaction, and security surveillance. However, the high computational cost of the current models limits their practicality for real-time applications on resource-constrained devices. This study addressed this challenge by leveraging knowledge distillation to develop lightweight age and gender prediction models that maintain a high accuracy. We propose a knowledge distillation method using teacher bounds for the efficient learning of small models for age and gender. This method allows the student model to selectively receive the teacher model’s knowledge, preventing it from unconditionally learning from the teacher in challenging age/gender prediction tasks involving factors like illusions and makeup. Our experiments used MobileNetV3 and EfficientFormer as the student models and Vision Outlooker (VOLO)-D1 as the teacher model, resulting in substantial efficiency improvements. MobileNetV3-Small, one of the student models we experimented with, achieved a 94.27% reduction in parameters and a 99.17% reduction in Giga Floating Point Operations per Second (GFLOPs). Furthermore, the distilled MobileNetV3-Small model improved gender prediction accuracy from 88.11% to 90.78%. Our findings confirm that knowledge distillation can effectively enhance model performance across diverse demographic groups while ensuring efficiency for deployment on embedded devices. This research advances the development of practical, high-performance AI applications in resource-limited environments.

Funder

NRF (National Research Foundation) of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3