Gas Hold-Up and Mass Transfer in a Vessel with an Unsteady Rotating Concave Blade Impeller

Author:

Frankiewicz Sebastian,Woziwodzki Szymon

Abstract

The steady mixing of gas-liquid systems is used where a large development of the interfacial area is required. However, the presence of gas in the liquid reduces the efficiency of mass transfer by reducing the mixing power, due to the creation of gas formations behind the impeller blades and the reduction in density. The efficiency of mass transfer can be increased by using a concave blade impeller or unsteady mixing. Mass transfer efficiency studies for these impellers and unsteady mixing are limited. This paper presents an analysis of the influence of the impeller construction on the gas hold-up and volumetric mass transfer coefficient kLa. Impellers with a different number of concave blades, and with alternatively arranged concave blades, were analyzed. The obtained results were compared with the standard flat blade turbine. The obtained results indicate that the arrangement of the concave blades has the greatest effect on reducing the gas hold-up and kLa. Higher values were obtained for the four-bladed and six-bladed impellers. A comparison of the gas hold-up rate for the unsteady and steady mixing has shown that for steady mixing greater gas hold-up is achieved. The volumetric mass transfer coefficient for unsteady mixing is also greater compared to steady mixing, indicating greater efficiency in mass transfer.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3