Numerical Investigation of a Short Polarization Beam Splitter Based on Dual-Core Photonic Crystal Fiber with As2S3 Layer

Author:

Chen NanORCID,Zhang Xuedian,Lu Xinglian,Zhang Zheng,Mu Zhangjian,Chang Min

Abstract

A polarization beam splitter is an important component of modern optical system, especially a splitter that combines the structural flexibility of photonic crystal fiber and the optical modulation of functional material. Thus, this paper presents a compact dual-core photonic crystal fiber polarization beam splitter based on thin layer As2S3. The mature finite element method was utilized to simulate the performance of the proposed splitter. Numerical simulation results indicated that at 1.55 μm, when the fiber device length was 1.0 mm, the x- and y-polarized lights could be split out, the extinction ratio could reach −83.6 dB, of which the bandwidth for extinction ratio better than −20 dB was 280 nm. It also had a low insertion loss of 0.18 dB for the x-polarized light. In addition, it can be completely fabricated using existing processes. The proposed compact polarization beam splitter is a promising candidate that can be used in various optical fields.

Funder

National Key Scientific Apparatus Development of Special Item of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3