Water Deficit Timing Affects Physiological Drought Response, Fruit Size, and Bitter Pit Development for ‘Honeycrisp’ Apple

Author:

Reid Michelle,Kalcsits LeeORCID

Abstract

Irrigation is critical to maintain plant growth and productivity in many apple-producing regions. ‘Honeycrisp’ apple characteristically develops large fruit that are also susceptible to bitter pit. Limiting fruit size by restricting irrigation may represent an opportunity to control bitter pit in ‘Honeycrisp’. For three seasons, ‘Honeycrisp’ trees were subject to water limitations in 30-day increments and compared to a fully watered control. Water limitations were imposed from 16–45, 46–75, and 76–105 days after full bloom (DAFB). Soil moisture for the well-watered control was maintained at 80–90% of field capacity for the entire season. For two years, physiological measurements were made every 15 days from 30 to 105 DAFB. Fruit quality, bitter pit incidence, shoot length, and return bloom were also measured to assess impacts on growth and productivity. When water was limited, stomatal conductance and net gas exchange were lower compared to the well-watered control and stem water potential decreased by 30–50% throughout the growing season. Early season water limitations had a lower impact on plant response to abiotic stress compared to late-season limitations. Overall, water deficits during fruit expansion phases contributed to fewer large fruit and decreased overall bitter pit incidence with no negative effects on fruit quality.

Funder

Washington Tree Fruit Research Commission

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference37 articles.

1. Honeycrisp: Promising profit maker or just another problem child?;Rosenberger;N. Y. Fruit Q.,2001

2. Why is “Honeycrisp” so susceptible to bitter pit?;Cheng;Fruit Q.,2018

3. Bitter pit in apple fruit;Ferguson,1989

4. Crop Load Influences Fruit Quality, Nutritional Balance, and Return Bloom in ‘Honeycrisp’ Apple

5. Calcium Absorption during Fruit Development in ‘Honeycrisp’ Apple Measured Using 44Ca as a Stable Isotope Tracer

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3