Edge compute algorithm enabled localized crop physiology sensing system for apple (Malus domestica Borkh.) crop water stress monitoring
-
Published:2024-09
Issue:
Volume:224
Page:109137
-
ISSN:0168-1699
-
Container-title:Computers and Electronics in Agriculture
-
language:en
-
Short-container-title:Computers and Electronics in Agriculture
Author:
Amogi Basavaraj R.,
Pukrongta Nisit,
Khot Lav R.ORCID,
Sallato Bernardita V.
Reference82 articles.
1. Canopy resistance as affected by soil and meteorological factors in potato;Amer;Agron. J.,2004
2. Amogi, B.R., Chandel, A.K., Khot, L.R., Jacoby, P.W., 2020. A mobile thermal-RGB imaging tool for mapping crop water stress of grapevines, in: 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). pp. 293–297. DOI: 10.1109/MetroAgriFor50201.2020.9277545.
3. Amogi, B., Ranjan, R., Khot, L.R., 2022. Reliable image processing algorithm for sunburn management in green apples, in: 2022 IEEE Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). pp. 186–190.
4. Mask R-CNN aided fruit surface temperature monitoring algorithm with edge compute enabled internet of things system for automated apple heat stress management;Amogi;Information Processing in Agriculture,2023
5. Do stomata respond to relative humidity?;Aphalo;Plant. Cell Environ.,1991