Transcriptome and Phytochemical Analysis Reveals the Alteration of Plant Hormones, Characteristic Metabolites, and Related Gene Expression in Tea (Camellia sinensis L.) Leaves During Withering

Author:

Xu ,Su ,Zhao ,Jin ,Cheng ,Xu ,Lai ,Yin ,Wang

Abstract

Plant hormones play an important role in the chemical metabolism of postharvest plants. However, alterations in plant hormones of postharvest tea and their potential modulation of quality-related metabolites are unknown. In this study, the dynamic alterations of abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and critical metabolites, such as catechins, theanine, and caffeine, in tea leaves were analyzed during withering from 0 to 24 h. It was found that the ABA content increased from 0 to 9 h but decreased thereafter, JA continuously increased, and the SA content showed no significant change. With the exception of gallocatechin (GC) and epicatechin (EC), the amounts of other critical components were significantly reduced at 24 h. Transcriptome analysis showed that compared with 0 h, 2256, 3654, and 1275 differentially expressed genes (DEGs) were identified at 9, 15, and 24 h, respectively. For all comparisons, DEGs corresponding to the pathways of “phenylalanine, tyrosine, and tryptophan biosynthesis” and “phenylalanine metabolism”, involved in the biosynthesis of catechins, were significantly enriched. Weighted correlation network analysis (WGCNA) of co-expression genes indicated that many of the modules were only correlated with a specific trait during the withering process; the dark olive-green module, however, was correlated with two traits, ABA and theanine. Our study indicates that withering induced dramatic alterations in gene transcription as well as levels of hormones (ABA, JA, and SA) and important components, and that ABA regulated theanine metabolism during this process.

Funder

Guangdong Science and Technology Department

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3