In Vitro Regeneration Potential of White Lupin (Lupinus albus) from Cotyledonary Nodes

Author:

Aslam Mehtab MuhammadORCID,Karanja Joseph K.,Zhang Qian,Lin Huifeng,Xia Tianyu,Akhtar KashifORCID,Liu Jianping,Miao Rui,Xu Feiyun,Xu Weifeng

Abstract

The tissue culture regeneration system of Lupinus albus has always been considered as recalcitrant material due to its genotype-dependent response and low regeneration efficiency that hamper the use of genetic engineering. Establishment of repeatable plant regeneration protocol is a prerequisite tool for successful application of genetic engineering. This aim of this study was to develop standardized, efficient protocol for successful shoot induction from cotyledonary node of white lupin. In this study, 5 day old aseptically cultured seedlings were used to prepare three explants (half cotyledonary node, HCN; whole cotyledonary node, WCN; and traditional cotyledonary node, TCN), cultured on four concentrations of M519 medium (M519, ½ M519, 1/3 M519, and ¼ M519), containing four carbohydrate sources (sucrose, fructose, maltose, and glucose), and stimulated with various combinations of KT (kinetin), and NAA (naphthalene acetic acid) for direct shoot regeneration. High frequency of 80% shoot regeneration was obtained on ½ M519 medium (KT 4.0 mg L−1 + NAA 0.1 mg L−1) by using HCN as an explant. Interestingly, combinations of (KT 4.0 mg L−1 + NAA 0.1 mg L−1 + BAP 1.67 mg L−1), and (KT 2.0 mg L−1 + NAA 0.1 mg L−1) showed similar shoot regeneration frequency of 60%. Augmentation of 0.25 g L−1 activated charcoal (AC) not only reduced browning effect but also improved shoot elongation. Among the all carbohydrate sources, sucrose showed the highest regeneration frequency with HCN. Additionally, 80% rooting frequency was recorded on ½ M519 containing IAA 1.0 mg L−1 + KT 0.1 mg L−1 (indole acetic acid) after 28 days of culturing. The present study describes establishment of an efficient and successful protocol for direct plant regeneration of white lupin from different cotyledonary nodes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3