Enhanced Somatic Embryo Induction of a Tree Peony, Paeonia ostii ‘Fengdan’, by a Combination of 6-benzylaminopurine (BA) and 1-naphthylacetic Acid (NAA)

Author:

Ren XiuxiaORCID,Liu YaORCID,Jeong Byoung RyongORCID

Abstract

Somatic embryogenesis is a preferred method for vegetative propagation due to its high propagation efficiency. In this study, zygotic embryos, cotyledons, and hypocotyls of Paeonia ostii ‘Fengdan’ were used as the explant to induce somatic embryogenesis. The results showed that a combination of 0.5 mg·L−1 thidiazuron (TDZ) and 0.5 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) was effective in inducing somatic embryos from the zygotic embryo and cotyledon explants. Hypocotyls only formed somatic embryos on Murashige and Skoog (MS) medium supplemented with both 0.5 mg·L−1 TDZ and 0.5 mg·L−1 1-naphthylacetic acid (NAA). Moreover, the compact callus was effectively produced from zygotic embryo, cotyledon, and hypocotyl explants in medium supplemented with a combination of 3.0 mg·L−1 6-benzylaminopurine (BA) and 1.0 mg·L−1 NAA, and then converted into somatic embryos in the same medium, and the ratio of the explants with embryo induction and number of embryos induced per explant were much higher than those induced by 0.5 mg·L−1 TDZ and either 0.5 mg·L−1 2,4-D or 0.5 mg·L−1 NAA. The MS medium was better than the woody plant medium (WPM) for inducing somatic embryos from zygotic embryo and hypocotyl explants, whereas the WPM was better than the MS medium for somatic embryogenesis induction from cotyledon explants. All of the somatic embryos developed well into mature embryos on their respective media supplemented with both 3.0 mg·L−1 BA and 1.0 mg·L−1 NAA. Overall, the protocols for indirect somatic embryogenesis from zygotic embryo, cotyledon, and hypocotyl of P. ostii ‘Fengdan’ were successfully established, which can greatly facilitate their propagation and breeding processes.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3