Cotransport of Cu with Graphene Oxide in Saturated Porous Media with Varying Degrees of Geochemical Heterogeneity

Author:

He Jianzhou,Wang DengjunORCID,Fan Tingting,Zhou Dongmei

Abstract

Graphene oxide (GO) is likely to encounter heavy metals due to its widespread use and inevitable release into the subsurface environment, where the ubiquitous presence of iron oxides (e.g., hematite) would affect their interaction and transport. The present study aimed to investigate the cotransport of GO (20 mg L−1) and copper (0.05 mM CuCl2) in the presence of varying degrees of geochemical heterogeneity represented by iron oxide-coated sand fractions (ω = 0‒0.45) in water-saturated columns under environmentally relevant physicochemical conditions (1 mM KCl at pH 5.0‒9.0). The Langmuir-fitted maximum adsorption capacity of Cu2+ by GO reached 137.6 mg g−1, and the presence of 0.05 mM Cu2+ decreased the colloidal stability and subsequent transport of GO in porous media. The iron oxide coating was found to significantly inhibit the transport of GO and Cu-loaded GO in sand-packed columns, which can be explained by the favorable deposition of the negatively charged GO onto patches of the positively charged iron oxide coatings at pH 5.0. Increasing the solution pH from 5.0 to 9.0 promoted the mobility of GO, with the exception of pH 7.5, in which the lowest breakthrough of GO was observed. This is possibly due to the fact that the surface charge of iron oxide approaches zero at pH 7.5, suggesting that new “favorable” sites are available for GO retention. This study deciphered the complicated interactions among engineered nanomaterials, heavy metals, and geochemical heterogeneity under environmentally relevant physicochemical conditions. Our results highlight the significant role of geochemical heterogeneity, such as iron oxide patches, in determining the fate and transport of GO and GO-heavy metal association in the subsurface environment.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3