Influence of Soil Colloids on Ni Adsorption and Transport in the Saturated Porous Media: Effects of pH, Ionic Strength, and Humic Acid

Author:

Wei Zhanxi,Zhu Yidan,Wang Yuanyuan,Song Zefeng,Wu Yuanzhao,Ma Wenli,Hou Yongxia,Zhang Wenqing,Yang YuesuoORCID

Abstract

Natural colloids are widely distributed in soil and groundwater. Due to their specific characteristics, colloids can actively involve various transport contaminants, resulting in a complicated fate and the transport of heavy metals to the environment. This study investigated the effects of soil colloids on the adsorption and transport of Ni2+ in saturated porous media under different conditions, including pH, ion strength (IS), and humic acid (HA), because these indexes are non-negligible in the fates of various organic or inorganic matters in the subsurface environment. The results indicate that Ni2+ adsorption by soil colloids slightly increased from 17% to 25% with the increase of pH from 5.5 to 7.5 at the IS of 30 mmol·L−1, whilst it significantly reduced from 55% to 17% with the increase of IS from 0 to 30 mmol·L−1 at a pH of 5.5. Both Langmuir and Freundlich models can fit the adsorption isotherms of Ni2+ on soil colloids and quartz sand. According to the column experiment, the presence of soil colloids increased the initial penetration rate, but could not increase the final transport efficiency of Ni2+ in the effluent. The presence of soil colloids has weakened the effect of IS on Ni2+ transport in the sand column. Moreover, this experiment implies that HA remarkably decreased the Ni2+ transport efficiency from 71.3% to 58.0% in the presence of soil colloids and that there was no significant difference in the HA effect on the Ni2+ transport in the absence of soil colloids.

Funder

Open-end Fund of Fujian Provincial Key Laboratory of Ecology-toxicological Effects & Control for Emerging Contaminants

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3