Correlation Coefficient Based Optimal Vibration Sensor Placement and Number

Author:

Shin Geon-Ho,Hur Jang-Wook

Abstract

Vibration sensors are mostly used for fault diagnoses of machines or structures. If more sensors are applied, more accurate fault diagnosis is possible. However, it will obviously cost more. There are many approaches to optimize the number and installation location/point of vibration sensors for more efficient fault diagnosis. Existing methods require a great deal of computational throughput for optimization when considering many mode frequencies with points where vibration sensors are likely to be installed. This paper proposes a practical way of optimizing the sensor installation point considering many mode frequencies with lots of places for sensor installation. FEA was conducted to identify displacement values of each frequency in the candidate points. Then, correlation coefficients were applied to the FEA result to optimize the installation location and number of vibration sensors. Taking into account cases where the number of sensors has been set by users, FIM was applied. The correlation coefficient optimized the candidate points where 24,252 vibration sensors were to be installed and reduced this to 10 points. FIM, which was not suitable for directly optimizing sensor locations because it required a lot of computational throughput and was usually applied to evaluate other methods, is now applicable to candidate points that have been reduced by the correlation coefficient. This paper does not draw the best optimal sensor location but presents a way to apply to large-scale or complicated forms with a little computational throughput.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3