Tribological Performance of High-Entropy Coatings (HECs): A Review

Author:

Patel Payank,Roy Amit,Sharifi Navid,Stoyanov Pantcho,Chromik Richard R.,Moreau Christian

Abstract

Surface coatings that operate effectively at elevated temperatures provide compatibility with critical service conditions as well as improved tribological performance of the components. High-entropy coatings (HECs), including metallic, ceramics, and composites, have gained attention all over the world and developed rapidly over the past 18 years, due to their excellent mechanical and tribological properties. High-entropy alloys (HEAs) are defined as alloys containing five or more principal elements in equal or close to equal atomic percentage. Owing to the high configurational entropy compared to conventional alloys, HEAs are usually composed of a simple solid solution phase, such as the BCC and FCC phases, instead of complex, brittle intermetallic phases. Several researchers have investigated the mechanical, oxidation, corrosion and wear properties of high-entropy oxides, carbides, borides, and silicates using various coating and testing techniques. More recently, the friction and wear characteristics of high-entropy coatings (HECs) have gained interest within various industrial sectors, mainly due to their favourable mechanical and tribological properties at high temperatures. In this review article, the authors identified the research studies and developments in high-entropy coatings (HECs) fabricated on various substrate materials using different synthesis methods. In addition, the current understanding of the HECs characteristics is critically reviewed, including the fabrication routes of targets/feedstock, synthesis methods utilized in various research studies, microstructural and tribological behaviour from room temperature to high temperatures.

Publisher

MDPI AG

Subject

General Materials Science

Reference203 articles.

1. Introduction to Tribology and Tribological Parameters;Czichos,2017

2. High Temperature Wear Processes;Hernandez,2014

3. Microstructure and Wear of Materials;Zum Gahr,1987

4. Trends in tribological materials and engine technology

5. High temperature tribological study of cobalt-based coatings reinforced with different percentages of alumina

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3