Synthesis and characterization of low-friction W-V-N alloy coatings using reactive magnetron sputtering technique for tribological applications

Author:

Rao Akula Umamaheswara1ORCID,Tiwari Sunil Kumar2ORCID,Kharb Archana Singh3ORCID,Sardana Neha4ORCID,Chawla Vipin5ORCID,Kumar Sanjeev3ORCID,Saxena Vikas1ORCID,Chawla Amit Kumar3ORCID

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, UPES 1 , Dehradun 248007, India

2. School of Technology, Woxsen University 2 , Hyderabad, Telangana 502345, India

3. Department of Applied Science, School of Engineering, UPES 3 , Dehradun 248007, India

4. Department of Materials and Metallurgical Engineering, Indian Institute of Technology 4 , Ropar, India

5. Institute Instrumentation Center, IIT Roorkee 5 , Roorkee, Uttarakhand 248007, India

Abstract

In recent years, self-lubricating hard coatings have garnered significant interest across various industries such as cutting tools, molds, and manufacturing because of their ability to reduce friction and wear at high temperatures in dry-cutting applications. The present study focuses on synthesis of tungsten-vanadium-nitride (W-V-N) coatings using the reactive magnetron cosputtering technique in an Ar + N2 plasma gas environment. The coating microstructure, surface morphology, wetting behavior, and mechanical properties were characterized by grazing incidence x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, energy-dispersive spectroscopy, and nanoindentation. Wear resistance properties of the prepared W-V-N alloy coatings were investigated using a ball-on-disk tribometer at two different temperatures. The findings indicate that all W-V-N coatings, regardless of the vanadium content, exhibit a face-centered cubic structure and form a solid solution of W-V-N. Among the coatings studied, W0.68V0.32N exhibited the highest hardness (14.25 GPa) and Young's modulus (257.53 GPa), as well as an excellent wear resistance. Increasing the vanadium content in the W-V-N coating led to a notable reduction in both the specific wear rate and friction coefficient. Moreover, this reduction was more pronounced with an increase in temperature during the wear test. Improvement in the wear properties can be attributed to the formation of Magnéli phases of vanadium oxides on the surface of the coatings. The ability of the W-V-N coating to reduce friction and wear, combined with its improved mechanical properties, makes it a promising candidate for solid lubricating coatings in tribological applications.

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3