Abstract
Run-of-river hydropower plants (RoR HPPs) are capable of interrupting the sediment connectivity of many alpine rivers. Still, there is a lack of systematical investigations of possible sediment management strategies for small and medium sized RoR HPPs. This study deals with the headwater section of an impoundment and the approach of sediment remobilization during drawdown operations. Therefore, a typical medium sized gravel bed river having a width of 20 m, a mean bed slope of 0.005, a mean flow rate of 22 m3/s, and a 1-year flood flow of 104 m3/s is recreated by a 1:20 scaled physical model. Heterogenous sediment mixtures were used under mobile-bed conditions, representing a range of 14–120 mm in nature. During the experiments, the flow rate was set to be 70% of the 1-year flood (HQ1) regarding on the ability to mobilize all sediment fractions. The possibility to remobilize delta depositions by (partial) drawdown flushing within a reasonable period (≈9 h in 1:1 scale) was shown by the results. The erosion of existing headwater delta deposition was found to be retrogressive and twice as fast as the preceding delta formation process. A spatiotemporal erosion scheme points out these findings. This supports the strategy of a reservoir drawdown at flood events of high reoccurrence rate.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Reference25 articles.
1. Wasserkraft im Wandel der Zeit;Matt,2019
2. Water Framework Directive 2000/60/EC. European Parliament and the Council of the European Union;Off. J. Eur. Communities,2000
3. Current hydropower developments in Europe
4. Revised Renewable Energy Directive 2018/2001/EU,2018
5. Feststoffhaushalt der Alpenflüsse;Habersack,2019
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献