Abstract
The purpose of this paper is to elucidate the interrelations between three essentially different concepts: solenoids, topological entropy, and Hausdorff dimension. For this purpose, we describe the dynamics of a solenoid by topological entropy-like quantities and investigate the relations between them. For L-Lipschitz solenoids and locally λ — expanding solenoids, we show that the topological entropy and fractal dimensions are closely related. For a locally λ — expanding solenoid, we prove that its topological entropy is lower estimated by the Hausdorff dimension of X multiplied by the logarithm of λ .
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献