Spatial-Temporal 3D Residual Correlation Network for Urban Traffic Status Prediction

Author:

Bao Yin-Xin,Shi Quan,Shen Qin-Qin,Cao YangORCID

Abstract

Accurate traffic status prediction is of great importance to improve the security and reliability of the intelligent transportation system. However, urban traffic status prediction is a very challenging task due to the tight symmetry among the Human–Vehicle–Environment (HVE). The recently proposed spatial–temporal 3D convolutional neural network (ST-3DNet) effectively extracts both spatial and temporal characteristics in HVE, but ignores the essential long-term temporal characteristics and the symmetry of historical data. Therefore, a novel spatial–temporal 3D residual correlation network (ST-3DRCN) is proposed for urban traffic status prediction in this paper. The ST-3DRCN firstly introduces the Pearson correlation coefficient method to extract a high correlation between traffic data. Then, a dynamic spatial feature extraction component is constructed by using 3D convolution combined with residual units to capture dynamic spatial features. After that, based on the idea of long short-term memory (LSTM), a novel architectural unit is proposed to extract dynamic temporal features. Finally, the spatial and temporal features are fused to obtain the final prediction results. Experiments have been performed using two datasets from Chengdu, China (TaxiCD) and California, USA (PEMS-BAY). Taking the root mean square error (RMSE) as the evaluation index, the prediction accuracy of ST-3DRCN on TaxiCD dataset is 21.4%, 21.3%, 11.7%, 10.8%, 4.7%, 3.6% and 2.3% higher than LSTM, convolutional neural network (CNN), 3D-CNN, spatial–temporal residual network (ST-ResNet), spatial–temporal graph convolutional network (ST-GCN), dynamic global-local spatial–temporal network (DGLSTNet), and ST-3DNet, respectively.

Funder

National Natural Science Foundation of China

" 333" Scientific Research Project of Jiangsu

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3