Abstract
Supercapacitors have been recognized as one of the more promising energy storage devices, with great potential use in portable electronics and hybrid vehicles. In this study, a composite made of clusters of iron oxide (Fe3O4-γFe2O3) nanoparticles and reduced graphene oxide (rGO) has been developed through a simple one-step solvothermal synthesis method for a high-performance supercapacitor electrode. Electrochemical assessment via cyclic voltammetry, galvanostatic charge–discharge experiments, and electrochemical impedance spectroscopy (EIS) revealed that the Fe3O4-γFe2O3/rGO nanocomposite showed much higher specific capacitance than either rGO or bare clusters of Fe3O4-γFe2O3 nanoparticles. In particular, specific capacitance values of 100 F g−1, 250 F g−1, and 528 F g−1 were obtained for the clusters of iron oxide nanoparticles, rGO, and the hybrid nanostructure, respectively. The enhancement of the electrochemical performance of the composite material may be attributed to the synergistic interaction between the layers of graphene oxide and the clusters of iron oxide nanoparticles. The intimate contact between the two phases eliminates the interface, thus enabling facile electron transport, which is key to attaining high specific capacitance and, consequently, enhanced charge–discharge time. Performance evaluation in consecutive cycles has demonstrated that the composite material retains 110% of its initial capacitance after 3000 cycles, making it a promising candidate for supercapacitors.
Subject
General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献