Hierarchical Nickel Cobalt Phosphide @ Carbon Nanofibers Composite Microspheres: Ultrahigh Energy Densities of Electrodes for Supercapacitors

Author:

Zhang Jinqiao1,Cen Meiling1,Wei Tao1,Wang Qianyun1,Xu Jing1ORCID

Affiliation:

1. College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China

Abstract

Supercapacitors (SCs) are widely used in energy storage devices due to their superior power density and long cycle lifetime. However, the limited energy densities of SCs hinder their industrial application to a great extent. In this study, we present a new combination of metallic phosphide–carbon composites, synthesized by directly carbonizing (Ni1−xCox)5TiO7 nanowires via thermal chemical vapor deposition (TCVD) technology. The new method uses one-dimensional (1D) (Ni1−xCox)TiO7 nanowires as precursors and supporters for the in situ growth of intertwined porous CNF microspheres. These 1D nanowires undergo microstructure transformation, resulting in the formation of CoNiP nanoparticles, which act as excellent interconnected catalytic nanoparticles for the growth of porous 3D CNF microspheres. Benefiting from the synergistic effect of a unique 1D/3D structure, the agglomeration of nanoparticles can effectively be prevented. The resulting CNF microspheres exhibit an interconnected conductive matrix and provide a large specific surface area with abundant ion/charge transport channels. Consequently, at a scanning rate of 10 mV s−1, its specific capacitance in 1.0 M Na2SO4 + 0.05 M Fe(CN)63−/4− aqueous solution is as high as 311.7 mF cm−2. Furthermore, the CoNiP@CNFs composite film-based symmetrical SCs show an ultrahigh energy density of 20.08 Wh kg−1 at a power density of 7.20 kW kg−1, along with outstanding cycling stability, with 87.2% capacity retention after 10,000 cycles in soluble redox electrolytes. This work provides a new strategy for designing and applying high-performance binary transition metal phosphide/carbon composites for next-generation energy storage devices.

Funder

National Natural Science Foundation of China

Science and Technology Foundation of Guizhou Provinc

Guizhou University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3