Affiliation:
1. School of Materials Science and Engineering Liaocheng University Liaocheng Shandong 252000 China
2. School of Materials Science and Engineering Smart Sensing Interdisciplinary Science Center Nankai University Tianjin 300350 China
3. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China
Abstract
AbstractSolar‐driven water electrolysis has been considered to be a promising route to produce green hydrogen, because the conventional water electrolysis system is not completely renewable as it requires power from nonrenewable fossil fuel sources. This review emphasizes the strategies for solar‐driven water electrolysis, including the construction of photovoltaic (PV)‐water electrolyzer systems, PV‐rechargeable energy storage device‐water electrolyzer systems with solar energy as the sole input energy, and photoelectrochemical water splitting systems. The basic discussions of the above strategies for solar‐driven water electrolysis are first presented. Meanwhile, replacing the oxygen evolution reaction with the electrooxidation of organic compounds can effectively improve the efficiency of water splitting. Also, solar‐driven seawater electrolysis greatly broadens the practical applications due to the abundant reserves of seawater. Recent years have witnessed great development in the field of solar‐driven water electrolysis. The recent research development in the area is subsequently reviewed. Finally, perspectives on the existing challenges along with some opportunities for the further development of solar‐driven water electrolysis are provided.
Funder
Natural Science Foundation of Shandong Province
National Natural Science Foundation of China
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment
Cited by
85 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献