Abstract
The simple structure and operation method of resistive random-access memory (RRAM) has attracted attention as next-generation memory. However, as it is greatly influenced by the movement of oxygen atoms during switching, it is essential to minimize the damage and adjust the defects. Here, we fabricated an ITO/SnOX/TaN device and investigated the performance improvement with the treatment of O2 plasma. Firstly, the change in the forming curve was noticeable, and the defect adjustment was carried out effectively. By comparing the I–V curves, it was confirmed that the resistance increased and the current was successfully suppressed, making it suitable for use as a low-power consumption device. Retention of more than 104 s at room temperature was measured, and an endurance of 200 cycles was performed. The filaments’ configuration was revealed through the depth profile of X-ray photoelectron spectroscopy (XPS) and modeled to be visually observed. The work with plasma treatment provides a variety of applications to the neuromorphic system that require a low-current level.
Funder
National Research Foundation of Korea
Institute of Energy Technology Evaluation and Planning
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献