Inspection Method of Rope Arrangement in the Ultra-Deep Mine Hoist Based on Optical Projection and Machine Vision

Author:

Shi LixiangORCID,Tan Jianping,Xue Shaohua,Deng Jiwei

Abstract

Due to the importance of safety detection of the drum’s rope arrangement in the ultra-deep mine hoist and the current situation whereby the speed, accuracy and robustness of rope routing detection are not up to the requirements, a novel machine-vision-detection method based on the projection of the drum’s edge is designed in this paper. (1) The appropriate position of the point source corresponding to different reels is standardized to obtain better projection images. (2) The corresponding image processing and edge curve detection algorithm are designed according to the characteristics of rope arrangement projection. (3) The Gaussian filtering algorithm is improved to adapt to the situation that the curve contains wavelet peak noise when extracting the eigenvalues of the edge curve. (4) The DBSCAN (density-based spatial clustering of applications with noise) method is used to solve the unsupervised classification problem of eigenvalues of rope arrangement, and the distance threshold is calculated according to the characteristics of this kind of data. Finally, we can judge whether there is a rope arranging fault just through one frame and output the location and number of the fault. The accuracy and robustness of the method are verified both in the laboratory and the ultra-deep mine simulation experimental platform. In addition, the detection speed can reach 300 fps under the premise of stable detection.

Funder

National Key Research and Development Program of China

National Program on Key Basic Research Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3