Discovery, Quantitative Recurrence, and Inhibition of Motion-Blur Hysteresis Phenomenon in Visual Tracking Displacement Detection

Author:

Shi Lixiang1,Tan Jianping1

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410006, China

Abstract

Motion blur is common in video tracking and detection, and severe motion blur can lead to failure in tracking and detection. In this work, a motion-blur hysteresis phenomenon (MBHP) was discovered, which has an impact on tracking and detection accuracy as well as image annotation. In order to accurately quantify MBHP, this paper proposes a motion-blur dataset construction method based on a motion-blur operator (MBO) generation method and self-similar object images, and designs APSF, a MBO generation method. The optimized sub-pixel estimation method of the point spread function (SPEPSF) is used to demonstrate the accuracy and robustness of the APSF method, showing the maximum error (ME) of APSF to be smaller than others (reduced by 86%, when motion-blur length > 20, motion-blur angle = 0), and the mean square error (MSE) of APSF to be smaller than others (reduced by 65.67% when motion-blur angle = 0). A fast image matching method based on a fast correlation response coefficient (FAST-PCC) and improved KCF were used with the motion-blur dataset to quantify MBHP. The results show that MBHP exists significantly when the motion blur changes and the error caused by MBHP is close to half of the difference of the motion-blur length between two consecutive frames. A general flow chart of visual tracking displacement detection with error compensation for MBHP was designed, and three methods for calculating compensation values were proposed: compensation values based on inter-frame displacement estimation error, SPEPSF, and no-reference image quality assessment (NR-IQA) indicators. Additionally, the implementation experiments showed that this error can be reduced by more than 96%.

Funder

National Key Research and Development Program of China

National Program on Key Basic Research Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3