Author:
Ahmed Asmaa,Masmoudi Radhouane
Abstract
This paper aims at investigating the general axial behavior of long circular concrete-filled, fiber-reinforced polymer (FRP) tube (CFFT) columns internally reinforced with different longitudinal rebars. A total of seven CFFT and three reinforced concrete (RC) columns served as control specimens for comparisons and were constructed and tested under cyclic axial loading until failure. The test parameters were: (1) internal reinforcement type (steel, glass fiber-reinforced polymer (GFRP) or carbon fiber-reinforced polymer (CFRP)) and amount; (2) GFRP tube thicknesses; and (3) nature of loading. All columns had 1900-mm in height and 213-mm in diameter. Examination of the test results has led to a number of significant conclusions in regards to the trend and ultimate condition of the axial stress-strain behavior, mode of failure of tested CFFT columns, and plastic strains. As expected, an increase in the FRP tube thickness (or stiffness) resulted in an increase in the strength and strain enhancement ratios. The validity of the available design provisions for predicting the ultimate load-carrying capacity of tested columns is also highlighted.
Reference34 articles.
1. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures,2008
2. Behavior of axially loaded concrete-filled circular fiber reinforced polymer tubes;Fam;ACI Struct. J.,2001
3. Slenderness Effects on Circular CFRP Confined Reinforced Concrete Columns
4. Design-oriented stress–strain model for FRP-confined concrete
5. Model of Concrete Confined by Fiber Composites
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献