Advanced Torque Control of Interior Permanent Magnet Motors for Electrical Hypercars

Author:

Bianco Ettore1ORCID,Rubino Sandro2ORCID,Carello Massimiliana1ORCID,Bojoi Iustin Radu2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy

2. Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy

Abstract

Nowadays, electric vehicles have gained significant attention as a promising solution to the environmental concerns associated with traditional combustion engine vehicles. With the increasing demand for high-performance hypercars, the need for advanced torque control strategies has become paramount. Field-Oriented Control using Current Vector Control represents a consolidated solution to implement torque control. However, this kind of control must take into account the DC link voltage variation and the variation of motor parameters depending on the magnets’ temperature while providing the maximum torque production for specific inverter current and voltage limitations. Multidimensional lookup tables are needed to provide a robust torque control from zero speed up to maximum speed under deep flux-weakening operation. Therefore, this article aims to explore the application of FOC 4D control in electrical hypercars and its impact on enhancing their overall performance and control stability. The article will delve into the principles underlying FOC 4D control and its advantages, challenges, and potential solutions to optimize the operation of electric hypercars. An electric powertrain model has been developed in the Simulink environment with the Simscape tool using a S-function block for the implementation of digital control in C-code. High-power electric motor electromagnetic parameters, derived from a Finite Element Method magnetic model, have been used in the simulation. The 4D LUTs have been computed from the motor flux maps and implemented in C-code in the S-function. The choice of FOC 4D control has been validated in the main load points of a hypercar application and compared to the conventional FOC. The final part of the research underlines the benefits of the FOC 4D on reliability, critical in motorsport applications.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3