Influence of the System MTF on the On-Board Lossless Compression of Hyperspectral Raw Data

Author:

Aiazzi Bruno,Selva MassimoORCID,Arienzo Alberto,Baronti Stefano

Abstract

A noticeable topic to be pursued in the field of on-board real-time data processing is the influence of the modulation transfer function (MTF) of the image acquisition system on the lossless compressibility of raw (that is, uncalibrated) hyperspectral data. Actually, notwithstanding the system device is constrained by several design and manufacturing requirements, the impact of the on-board MTF on the performance of data compressors is becoming remarkable. In particular, the aim of reducing both transmission bandwidth/power and mass storage can be efficiently pursued. Such an analysis is expected to be useful especially for systems employed in mini-satellites, whose payload must be compact and light. From this perspective, this paper investigates the performance of a typical imaging system that acquires low/medium-spatial-resolution images, by considering high-resolution reference data, which simulate the real scene to be imaged. To this end, standard Consultative Committee for Space Data Systems (CCSDS) Aviris 2006 data have been chosen, due to their spatial resolution of 17 m, which is adequate to be a reference for simulated data whose spatial resolution is foreseen between 50 and 150 m. MTF requirements are usually provided based on the cut-off value of the amplitude at the Nyquist frequency, which is defined as a half of the sampling frequency. Typically, a cut-off value between 0 . 2 and 0 . 3 ensures that a sufficient amount of information is delivered from the scene to the acquired image, by avoiding at the same time the degradation due to an excessive aliasing distortion. All the scores are achieved by running the standard lossless compression scheme CCSDS 1.2.3.0-B-1 for multispectral/hyperspectral data, as a function of the cut-off value and different noise acquisition levels. The final results, and related plots, show that this analysis can suggest a suitable choice for the cut-off value, to ensure both a sufficient quality and low bit rates for the transmitted data to the ground station.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3