Compression of Remotely Sensed Astronomical Image Using Wavelet-Based Compressed Sensing in Deep Space Exploration

Author:

Zhang Yong,Jiang Jie,Zhang Guangjun

Abstract

Compression of remotely sensed astronomical images is an essential part of deep space exploration. This study proposes a wavelet-based compressed sensing (CS) algorithm for astronomical image compression in a miniaturized independent optical sensor system, which introduces a new framework for CS in the wavelet domain. The algorithm starts with a traditional 2D discrete wavelet transform (DWT), which provides frequency information of an image. The wavelet coefficients are rearranged in a new structured manner determined by the parent–child relationship between the sub-bands. We design scanning modes based on the direction information of high-frequency sub-bands, and propose an optimized measurement matrix with a double allocation of measurement rate. Through a single measurement matrix, higher measurement rates can be simultaneously allocated to sparse vectors containing more information and coefficients with higher energy in sparse vectors. The double allocation strategy can achieve better image sampling. At the decoding side, orthogonal matching pursuit (OMP) and inverse discrete wavelet transform (IDWT) are used to reconstruct the image. Experimental results on simulated image and remotely sensed astronomical images show that our algorithm can achieve high-quality reconstruction with a low measurement rate.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3