Neighboring Discriminant Component Analysis for Asteroid Spectrum Classification

Author:

Guo TanORCID,Lu Xiao-PingORCID,Zhang Yong-Xiong,Yu Keping

Abstract

With the rapid development of aeronautic and deep space exploration technologies, a large number of high-resolution asteroid spectral data have been gathered, which can provide diagnostic information for identifying different categories of asteroids as well as their surface composition and mineralogical properties. However, owing to the noise of observation systems and the ever-changing external observation environments, the observed asteroid spectral data always contain noise and outliers exhibiting indivisible pattern characteristics, which will bring great challenges to the precise classification of asteroids. In order to alleviate the problem and to improve the separability and classification accuracy for different kinds of asteroids, this paper presents a novel Neighboring Discriminant Component Analysis (NDCA) model for asteroid spectrum feature learning. The key motivation is to transform the asteroid spectral data from the observation space into a feature subspace wherein the negative effects of outliers and noise will be minimized while the key category-related valuable knowledge in asteroid spectral data can be well explored. The effectiveness of the proposed NDCA model is verified on real-world asteroid reflectance spectra measured over the wavelength range from 0.45 to 2.45 μm, and promising classification performance has been achieved by the NDCA model in combination with different classifier models, such as the nearest neighbor (NN), support vector machine (SVM) and extreme learning machine (ELM).

Funder

The Science and Technology Development Fund, Macau SAR

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3