Remote Sensing Estimation of Sea Surface Salinity from GOCI Measurements in the Southern Yellow Sea

Author:

Sun Deyong,Su Xiaoping,Qiu Zhongfeng,Wang Shengqiang,Mao Zhihua,He YijunORCID

Abstract

Knowledge about the spatiotemporal distribution of sea surface salinity (SSS) provides valuable and important information for understanding various marine biogeochemical processes and ecosystems, especially for those coastal waters significantly affected by human activities. Remote-sensing techniques have been used to monitor salinity in the open ocean with their advantages of wide-area surveys and real-time monitoring. However, potential challenges remain when using satellite data with coarse spatiotemporal resolutions, leading to a loss of valuable information. In the current study, based on the local dataset collected over the southern Yellow Sea (SYS), a region-customized algorithm was developed to estimate SSS by using the remote sensing reflectance. The model evaluations indicated that our algorithm yielded good SSS estimation, with a root-mean-square error (RMSE) of 0.29 psu and a mean absolute percentage error (MAPE) of 0.75%. Satellite-derived SSS results compared well with those derived from in situ observations, further suggesting the good performance of our developed algorithm for the study regions. We applied this algorithm to Geostationary Ocean Color Imager (GOCI) data for the month of August from 2011 to 2018 in the SYS, and produced the spatial distribution patterns of the SSS for August of each year. The SSS values were high in offshore waters and lower in coastal waters, especially in the Yangtze River estuary. The negative correlation between the monthly Changjiang River discharge (CRD) and SSS (R = −0.71, p < 0.001) near the Yangtze River estuary was observed, suggesting that the SSS distribution in the Yangtze River estuary was potentially influenced by the CRD. In offshore waters, the correlation between SSS and CRD was weak (R < 0.2), suggesting that the riverine discharge’s effect might be weak.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3