Gap-filling techniques applied to the GOCI-derived daily sea surface salinity product for the Changjiang diluted water front in the East China Sea

Author:

Shin JisunORCID,Kim Dae-WonORCID,Kim So-Hyun,Lee Gi Seop,Khim Boo-Keun,Jo Young-Heon

Abstract

Abstract. The spatial and temporal resolutions of contemporary microwave-based sea surface salinity (SSS) measurements are insufficient. Thus, we developed a gap-free gridded daily SSS product with higher spatial and temporal resolutions, which can provide information on short-term variability in the East China Sea (ECS), such as the front changes by Changjiang diluted water (CDW). Specifically, we conducted gap-filling for daily SSS products based on the Geostationary Ocean Color Imager (GOCI) with a spatial resolution of 1 km (0.01°), using a machine learning approach during the summer seasons from 2015 to 2019. The comparison of the Soil Moisture Active Passive (SMAP), Copernicus Marine Environment Monitoring Service (CMEMS), and Hybrid Coordinate Ocean Model (HYCOM) SSS products with the GOCI-derived SSS over the entire SSS range showed that the SMAP SSS was highly consistent, whereas the HYCOM SSS was the least consistent. In the < 31 psu range, the SMAP SSS was still the most consistent with the GOCI-derived SSS (R2=0.46; root mean squared error: RMSE = 2.41 psu); in the > 31 psu range, the CMEMS and HYCOM SSS products showed similar levels of agreement with that of the SMAP SSS. We trained and tested three machine learning models – the fine trees, boosted trees, and bagged trees models – using the daily GOCI-derived SSS as output, including the three SSS products, environmental variables, and geographical data. We combined the three SSS products to construct input datasets for machine learning. Using the test dataset, the bagged trees model showed the best results (mean R2=0.98 and RMSE = 1.31 psu), and the models that used the SMAP SSS as input had the highest level. For the dataset in the > 31 psu range, all the models exhibited similarly reasonable performances (RMSE = 1.25–1.35 psu). The comparison with in situ SSS data, time series analysis, and the spatial SSS distribution derived from models showed that all the models had proper CDW distributions with reasonable RMSE levels (0.91–1.56 psu). In addition, the CDW front derived from the model gap-free daily SSS product clearly demonstrated the daily oceanic mechanism during the summer season in the ECS at a detailed spatial scale. Notably, the CDW front in the zonal direction, as captured by the Ieodo Ocean Research Station (I-ORS), moved approximately 3.04 km d−1 in 2016, which is very fast compared with the cases in other years. Our model yielded a gap-free gridded daily SSS product with reasonable accuracy and enabled the successful recognition of daily SSS fronts at the 1 km level, which was previously not possible with ocean color data. Such successful application of machine learning models can further provide useful information on the long-term variation of daily SSS in the ECS. The gridded gap-free SSS dataset at 0.01°×0.01° spatial resolution is freely available at https://doi.org/10.22808/DATA-2023-2 (Shin et al., 2023).

Funder

National Research Foundation of Korea

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3