Abstract
In view of the problems encountered in previous hydraulic 6-DOF parallel mechanism projects, flexible modes appear that the actual natural frequencies of x and y degrees of freedom of the parallel mechanism are lower than those obtained through calculation. The phenomenon above not only decreases the dynamic response characteristics of the mechanism, but also leads to doubts about the actual performance of the mechanism. The real reason for the phenomenon above is solved in this paper. First the flexible structure of the hydraulic cylinder is analyzed and simplified, and then the dynamic model of the rigid-flexible 6-DOF parallel mechanism is established with the extended Hamilton’s principle. Finally the rigid-flexible modes are calculated with the dynamic model obtained, further analysis and verification with a simulation model and an experimental platform are also conducted. Results show that the phenomenon of the flexible modes is mainly caused by the O-rings of the step-seals of the guide sleeve and those with less elasticity should be adopted to keep the dynamic characteristics of the parallel mechanism.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献