Rigid-Flexible Modal Analysis of the Hydraulic 6-DOF Parallel Mechanism

Author:

Zhang ChenyangORCID,Jiang Hongzhou

Abstract

In view of the problems encountered in previous hydraulic 6-DOF parallel mechanism projects, flexible modes appear that the actual natural frequencies of x and y degrees of freedom of the parallel mechanism are lower than those obtained through calculation. The phenomenon above not only decreases the dynamic response characteristics of the mechanism, but also leads to doubts about the actual performance of the mechanism. The real reason for the phenomenon above is solved in this paper. First the flexible structure of the hydraulic cylinder is analyzed and simplified, and then the dynamic model of the rigid-flexible 6-DOF parallel mechanism is established with the extended Hamilton’s principle. Finally the rigid-flexible modes are calculated with the dynamic model obtained, further analysis and verification with a simulation model and an experimental platform are also conducted. Results show that the phenomenon of the flexible modes is mainly caused by the O-rings of the step-seals of the guide sleeve and those with less elasticity should be adopted to keep the dynamic characteristics of the parallel mechanism.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3