Cost Benefit and Risk Analysis of Low iLUC Bioenergy Production in Europe Using Monte Carlo Simulation

Author:

L. Traverso,E. Mazzoli,C. Miller,G. PuligheORCID,C. Perelli,M. M. MoreseORCID,G. BrancaORCID

Abstract

Extensive surfaces of land are currently under-utilized, marginal and/or contaminated (MUC) in many EU and neighbouring countries. In the past few years, scientific research has demonstrated that bioenergy crops can potentially render this land profitable, generating income for the local populations and, at the same time, reaching the goals of the new Renewable Energy Directive (REDII) without interfering with food production. The main purpose of this paper is to measure net economic returns by computing benefits and costs of low indirect Land Use Change (iLUC) biofuel production on MUC land from the perspective of both the private investors and social welfare. A standard cost-benefit technique was applied to analyse and compare net returns of different advanced bioenergy value-chains in monetary terms. Productivity, economic feasibility and green-house gas (GHG) emissions impact were assessed and considered for the economic analysis. The considered pathways were cellulosic or second generation (2G) ethanol from Giant reed (Arundo donax) in Italy, electricity from miscanthus, biochemicals from spontaneous grass and cultivated Lucerne (Alpha-alfae) with sorghum for biomethane in Germany, and 2G ethanol from Willow (Salix viminalis) in Ukraine. For the risk assessment, Monte Carlo simulation was applied. The results indicated that in Italy and Ukraine, although the production of 2G ethanol would allow positive net yearly margins, the investments will not be profitable compared to the baseline scenarios. In Germany, the work showed good profitability for combined heat and power (CHP) and biochemicals. On the other hand, investments in biomethane showed negative results compared with the baseline scenarios. Finally, the Monte Carlo simulation enabled us to identify the range of possible economic results that could be attained once volatility is factored in. While for Italy the likelihood of yielding positive results remains lower than 20 percent, case studies in Ukraine and Germany showed higher certainty levels, ranging from 49 to 91 percent.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference37 articles.

1. Directive (EU) 2018/2001 of the European Parliament and of the Council on the promotion of the use of energy from renewable sources;Off. J. Eur. Union,2018

2. Soil and land management in a circular economy

3. Land, water and carbon footprints of circular bioenergy production systems

4. Project Coordinator's Perspective

5. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3