End-to-End Learning Framework for IMU-Based 6-DOF Odometry

Author:

Silva do Monte Lima João PauloORCID,Uchiyama HideakiORCID,Taniguchi Rin-ichiro

Abstract

This paper presents an end-to-end learning framework for performing 6-DOF odometry by using only inertial data obtained from a low-cost IMU. The proposed inertial odometry method allows leveraging inertial sensors that are widely available on mobile platforms for estimating their 3D trajectories. For this purpose, neural networks based on convolutional layers combined with a two-layer stacked bidirectional LSTM are explored from the following three aspects. First, two 6-DOF relative pose representations are investigated: one based on a vector in the spherical coordinate system, and the other based on both a translation vector and an unit quaternion. Second, the loss function in the network is designed with the combination of several 6-DOF pose distance metrics: mean squared error, translation mean absolute error, quaternion multiplicative error and quaternion inner product. Third, a multi-task learning framework is integrated to automatically balance the weights of multiple metrics. In the evaluation, qualitative and quantitative analyses were conducted with publicly-available inertial odometry datasets. The best combination of the relative pose representation and the loss function was the translation and quaternion together with the translation mean absolute error and quaternion multiplicative error, which obtained more accurate results with respect to state-of-the-art inertial odometry techniques.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Effectiveness of Training Objectives of Pretrained Models for Inertial Sensor Data*;2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2024-08-06

2. Fusing structure from motion and simulation-augmented pose regression from optical flow for challenging indoor environments;Journal of Visual Communication and Image Representation;2024-08

3. Detecting Face-Touching Gestures with Smartwatches and Deep Learning Networks;2024 47th International Conference on Telecommunications and Signal Processing (TSP);2024-07-10

4. Direct orientation estimation through inertial odometry based on a deep transformer model;Journal of Advanced Marine Engineering and Technology;2024-04-30

5. “Follower” to “Collaborator”: A robot proactive collaborative controller based on human multimodal information for 3D handling/assembly scenarios;Journal of Manufacturing Systems;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3