Enhanced Electromechanical Response in PVDF-BNBT Composite Nanofibers for Flexible Sensor Applications

Author:

Leung Chung MingORCID,Chen Xiaoqiu,Wang Tao,Tang Yanxue,Duan Zhihua,Zhao XiangyongORCID,Zhou Helezi,Wang FeifeiORCID

Abstract

Wearable energy harvesters and sensors have recently attracted significant attention with the rapid development of artificial intelligence and the Internet of Things (IoT). Compared to high-output bulk materials, these wearable devices are mainly fabricated by thin-film-based materials that limit their application. Therefore, the enhancement of output voltage and power for these devices has recently become an urgent topic. In this paper, the lead-free bismuth titanate-barium titanate (0.93(Na0.5Bi0.5)TiO3-0.07BaTiO3(BNBT)) nanoparticles and nanofibers were embedded into the PVDF nanofibers. They produced high inorganic electrical voltage coefficients, high electromechanical coupling coefficients, and environmentally friendly properties that enhance the electromechanical performance of pure PVDF nanofibers, and they are all the critical requirements for modern flexible pressure sensors. In detail, PVDF and PVDF-based composites nanofibers were prepared by electrospinning, and different flexible sandwich composite devices were fabricated by the PDMS encapsulation method. As a result, the six-time enhancement maximum output voltage was obtained in a PVDF-BNBT (fiber)-based composite sensor compared to the pure PVDF one. Our results indicate that the output voltage of the pressure sensors has been significantly enhanced, and the development gate is enabled by analyzing the related physical process and influence mechanism.

Funder

Shenzhen Peacock Plan

startup program of Harbin institute of technology, Shenzhen

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3