Investigation of the Effects of Infrared and Hot Air Oven Drying Methods on Drying Behaviour and Colour Parameters of Red Delicious Apple Slices

Author:

Dajbych Oldřich1ORCID,Kabutey Abraham1ORCID,Mizera Čestmír1,Herák David1ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic

Abstract

This present study investigated thin-layer drying characteristics of dried apple slices for a range of temperatures from 40 °C to 80 °C at a constant drying time of 10 h under infrared (IR) and hot air oven (OV) drying methods. The fresh apples were cut into a cylindrical size of thickness of 8.07 ± 0.05 mm and a diameter of 66.27 ± 3.13 mm. Fourteen thin-layer mathematical models available in the literature were used to predict the drying process. The goodness of fit of the drying models was assessed by the root mean square error (RMSE), chi-square (χ2), coefficient of determination (R2) and modelling efficiency (EF). The results showed that the lightness and greenness/redness of the dried sample, total colour change, chroma change, colour index, whiteness index, bulk density, final surface area and final volume significantly (p-value < 0.05) correlated with the drying temperature under IR. Under OV, however, only the final surface area and bulk density of the dried samples showed significant (p-value < 0.05) with the drying temperature. Shrinkage values for OV and IR methods showed both increasing and decreasing trends along with the drying temperatures. The Weibull distribution model proved most suitable for describing the drying processes based on the statistical validation metrics of the goodness of fit. In future studies, the combined effect of the above-mentioned drying methods and other drying techniques on apple slices among other agricultural products should be examined to obtain a better insight into the drying operations and quality improvement of the final product for preservation and consumer acceptability.

Funder

Internal Grant Agency of Czech University of Life Sciences Prague

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3