Abstract
Topographic delineation is critical to watershed hydrologic modeling, which may significantly influence the accuracy of model simulations. In most traditional delineation methods, however, surface depressions are fully filled and hence, watershed-scale hydrologic modeling is based on depression-less topography. In reality, dynamic filling and spilling of depressions affect hydrologic connectivity and surface runoff processes, especially in depression-dominated areas. Thus, accounting for the internal hydrologic connectivity within a watershed is crucial to such hydrologic simulations. The objective of this study was to improve watershed delineation to further reveal such complex hydrologic connectivity. To achieve this objective, a new algorithm, HUD-DC, was developed for delineation of hydrologic units (HUs) associated with depressions and channels. Unlike the traditional delineation methods, HUD-DC considers both filled and unfilled conditions to identify depressions and their overflow thresholds, as well as all channels. Furthermore, HUs, which include puddle-based units and channel-based units, were identified based on depressions and channels and the detailed connectivity between the HUs was determined. A watershed in North Dakota was selected for testing HUD-DC, and Arc Hydro was also utilized to compare with HUD-DC in depression-oriented delineation. The results highlight the significance of depressions and the complexity of hydrologic connectivity. In addition, HUD-DC was utilized to evaluate the variations in topographic characteristics under different filling conditions, which provided helpful guidance for the identification of filling thresholds to effectively remove artifacts in digital elevation models.
Funder
National Science Foundation
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献