Incorporating Wetland Delineation and Impacts in Watershed-Scale Hydrologic Modeling

Author:

Qi Tiansong1ORCID,Khanaum Mosammat Mustari1ORCID,Boutin Kyle2,Otte Marinus L.2,Lin Zhulu3,Chu Xuefeng1ORCID

Affiliation:

1. Department of Civil, Construction and Environmental Engineering (Dept. 2470), North Dakota State University, P.O. Box 6050, Fargo, ND 58108-6050, USA

2. Wet Ecosystem Research Group, Department of Biological Sciences (Dept. 2715), North Dakota State University, P.O. Box 6050, Fargo, ND 58108-6050, USA

3. Department of Agricultural and Biosystems Engineering (Dept. 7620), North Dakota State University, P.O. Box 6050, Fargo, ND 58108-6050, USA

Abstract

In semi-distributed hydrologic models, it is difficult to account for the impacts of wetlands on hydrologic processes, as they are based on lumped, subbasin-scale wetland concepts. It is a challenge to incorporate the influences of individual small wetlands into watershed-scale models by using lumped parameterization. The objective of this study was to improve watershed-scale hydrologic modeling by taking into account real wetland features during the wetland parameterization. To achieve this objective, a joint modeling framework was proposed to couple a surface delineation algorithm with a semi-distributed hydrologic model and then applied to the Upper Turtle River watershed in North Dakota, USA. The delineation algorithm identified the topographic properties of wetlands, which were further utilized for wetland parameterization. A nonlinear area–storage relationship was determined and used in the estimation of the wetland-related parameters. The results demonstrated that the new joint modeling approach effectively avoided misestimating the wetland-related parameters by accounting for real topographic characteristics (e.g., storage, ponding area, and contributing area) of identified wetlands and their influences, and provided improved modeling of the hydrologic processes in such a wetland-dominated watershed.

Funder

Environmental Protection Agency

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3