Abstract
Three-dimensional corner separation is common in axial compressors, which can lead to large flow loss and blockage especially when it evolves into the corner stall (open separation). In this paper, the evolution of the three-dimensional flow structures inside a cantilevered stator of a 1.5 stage low-speed highly loaded axial compressor as the stator hub clearance varies, and its effect on the whole compressor performance are investigated experimentally. Firstly, when the stator hub is sealed, the hub corner stall will occur at small mass flow rate conditions. Then, when a very small stator hub clearance is introduced, the leakage flow tends to strengthen the hub corner separation at large mass flow rate conditions and prompts the occurrence of hub corner stall as the mass flow rate decreases. This is mainly caused by the fact that the leakage flow has relatively low energy due to the viscosity effect in the clearance and large flow loss generation as the clearance flow comes across and mixes with the transverse secondary flow. Finally, when the stator hub clearance increases, the effect of the flow viscosity becomes very weak and could be ignored, so the enhanced leakage flow can suppress the transverse migration of the low energy flow near the hub, and the hub corner separation at large mass flow rate conditions could be weakened and the hub corner stall at small mass flow rate conditions could be removed or delayed. As the stator hub clearance varies, the flow structures inside the stator passage could be summarized into five typical flow structures, and this is closely associated with the performance of the compressor.
Funder
National Natural Science Foundation of China
National Science and Technology Major Project
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献