Performance Evaluation and Comparison between Direct and Chemical-Assisted Picosecond Laser Micro-Trepanning of Single Crystalline Silicon

Author:

Zhu Hao,Zhang Zhaoyang,Xu Kun,Xu Jinlei,Zhu Shuaijie,Wang Anbin,Qi Huan

Abstract

The fabrication of micro-holes in silicon substrates that have a proper taper, higher depth-to-diameter ratio, and better surface quality has been attracting intense interest for a long time due to its importance in the semiconductor and MEMS (Micro-Electro-Mechanical System) industry. In this paper, an experimental investigation of the machining performance of the direct and chemical-assisted picosecond laser trepanning of single crystalline silicon is conducted, with a view to assess the two machining methods. The relevant parameters affecting the trepanning process are considered, employing the orthogonal experimental design scheme. It is found that the direct laser trepanning results are associated with evident thermal defects, while the chemical-assisted method is capable of machining micro-holes with negligible thermal damage. Range analysis is then carried out, and the effects of the processing parameters on the hole characteristics are amply discussed to obtain the recommended parameters. Finally, the material removal mechanisms that are involved in the two machining methods are adequately analyzed. For the chemical-assisted trepanning case, the enhanced material removal rate may be attributed to the serious mechanical effects caused by the liquid-confined plasma and cavitation bubbles, and the chemical etching effect provided by NaOH solution.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3