Message Queuing Telemetry Transport Communication Infrastructure for Grid-Connected AC Microgrids Management

Author:

Arbab-Zavar BabakORCID,Palacios-Garcia Emilio J.ORCID,Vasquez Juan C.ORCID,Guerrero Josep M.ORCID

Abstract

In a context with an increasing number of non-traditional power sources, smart inverters function as the main interfaces between distributed energy resources (DERs) and the power bus. This role is even more prominent in microgrids (MGs), where numerous DERs must be controlled and coordinated. For this aim, MGs need to implement suitable communication links since, even in distributed control, the system must compensate voltage and frequency deviations caused by local controllers. Likewise, a communication system is required to optimize its operation. This paper aims to apply the technological advances brought by the Internet of Things (IoT) to the issue of communication within an MG. The work proposes a wireless communication architecture based on the message queuing telemetry transport (MQTT) protocol, accompanied by a set of requirements and specifications to establish a multi-directional information flow between DERs in an MG, and potential energy management system (EMS) or secondary controllers. A laboratory-scale testbed was implemented to demonstrate the operation of an EMS in the proposed architecture. The experimental results showed how current control structures seamlessly integrate with the proposed communication system. Furthermore, it was demonstrated that communication latencies or failures did not comprise the stability of the MG, but only decreased the optimality of the EMS control strategy.

Funder

Villum Fonden

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3